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We present an optimistic synchronous relaxation algorithm for parallel kinetic Monte Carlo (KMC) simu-
lations of thin film growth. This algorithm is based on spatial decomposition of the KMC lattice and it employs
two measures aimed at improving the parallel efficiency: dynamic global updating and domain boundary
shifting. We utilize this algorithm to simulate two different growth models, which represent the growth of Ag
on Ag(111) and the heteroepitaxial growth of Ag on Pt(111). We show that these simulations can achieve good
efficiency—especially for large domain sizes with a moderate number of processors. We find that domain
boundary shifting can improve efficiency—especially for simulations of growth in the Ag/Pt(111) system,
where the potential-energy surface topology creates areas of rapid, localized motion. We analyze the origins of

parallel efficiency in these simulations.
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I. INTRODUCTION

Kinetic Monte Carlo (KMC) simulations have emerged as
an attractive computational tool for modeling systems whose
dynamical evolution is governed by rare events. Although
these simulations have almost exclusively been done on se-
rial computers, KMC simulations can be run on parallel ar-
chitectures and reap benefits in speedup and in the system
size that can be probed. In this work, we study a parallel
implementation of KMC for modeling submonolayer epitax-
ial growth.

We focus on the “optimistic” synchronous relaxation (SR)
algorithm, which was originally developed by Eick et al. [1]
to model phone networks, employed by Lubachevsky and
Weiss for Ising spin systems [2], and adapted for epitaxial
growth simulations by Shim and Amar [3]. As we will dis-
cuss below, the SR algorithm is based on spatial decomposi-
tion of the KMC simulation lattice and, in maintaining the
fidelity of the simulated KMC timeline, it can incur signifi-
cant parallel overhead. In this work, we apply the SR algo-
rithm to simulate the growth of Ag on Ag(111) and of Ag on
one monolayer (ML) of Ag on Pt(111) [4-7]. The
Ag/Ag(111) system is similar to the systems studied by
Shim and Amar [3], in that adsorbed atoms have nearest-
neighbor interactions—although Shim and Amar studied
growth on a square lattice instead of the fcc(111) lattice of
fcc and hep sites that we study here. For simulations of the
growth of Ag on 1-ML Ag on Pt(111), we include interac-
tions, based on calculations with density-functional theory
(DFT), up to the sixth neighbor [8]. We demonstrate that the
SR algorithm can provide good efficiency in parallel simula-
tions for both these systems, although the overhead can be
substantial. By incorporating boundary shifting into the SR
algorithm, additional efficiency can be gained. We quantify
the origins of efficiency in these simulations.
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II. MODELS AND METHODS
A. Growth models

We simulate the submonolayer growth of Ag on Ag(111)
and of Ag on 1-ML Ag on Pt(111). This involves simulating
deposition with a rate of F' onto open fcc or hep sites and
adatom hopping between fcc and hep binding sites on these
fee(111) surfaces. We note that only “open” sites which (i)
are not occupied; and (ii) have the three adjacent binding
sites unoccupied can receive a deposited atom or have a
neighboring atom hop into them. The hopping rate of a par-
ticular adatom from an initial site i to a final, open site f
depends on the neighboring adatoms to sites i and f. This
dependence can be understood via the framework of
transition-state theory (TST), which predicts a rate r;_,; of
the form

ﬁf), (1)

ri*)f= Vo’i*)fexp< T

where E;_ is the energy barrier to go from site i to f, k is
Boltzmann’s constant, T is temperature, and vy, . is the
prefactor. In our simulations, the energy barrier is given by

[9]
Ei—>f: EO+%(Ef— Ei), (2)

where E° is the energy barrier for hopping of an isolated
adatom and € represents the sum of pairwise interaction
energies at the initial (final) state. We utilize a constant pref-
actor that is independent of the local environment of the
adatoms, so vy, ;=vy=10% 57",

For the Ag on Ag(111) system, we used E°=87 meV and
a nearest-neighbor pair interaction of 190 meV—both values
were obtained from first-principles DFT calculations [4]. For
Agon 1-ML Ag/Pt(111), we used E°=52 meV [4]. The val-
ues of the pair interaction energies for the first through sixth
neighbors used to model this system are summarized in Table
I and their spatial layout is shown in the diagram of Fig. 1.
These interactions are a subset of those obtained in the DFT
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TABLE 1. Pair interactions for Ag on 1-ML Ag on Pt(111).

Neighbor rank Interaction (meV)

1 -190
2 —-138
3 30
4 50
5 30
6 20

study by Luo and Fichthorn [8], who quantified these inter-
actions up to the 53rd neighbor. We note that the three “ze-
roth neighbor sites” to an adatom remain vacant with fcc
packing. Also the DFT calculations indicate a difference in
binding energy between fcc and hep sites of less than 3 meV
and that the pair interaction is independent of whether two
atoms are on fcc or hep binding sites [4].

With diffusion barriers of the form given by Eq. (2), there
are high energy barriers for atoms in islands to rearrange
once they have aggregated. This would lead to fractal adsor-
bate islands, shaped like diffusion-limited aggregates (see,
for example, Ref. [10]) with only a nearest-neighbor attrac-
tion. In the presence of the pair interactions given in Table I,
limited island rearrangement leads to elongated, chainlike
islands [5,6]. As discussed elsewhere [5], the kinetics of is-
land rearrangement cannot be adequately modeled by
nearest-neighbor hops and likely occurs via complex, multia-
tom motions. To account for these processes, we allow an fcc
(hcp) atom with one or more nearest neighbors to hop to a
nearest-neighbor fce (hep) site, thereby avoiding the interme-
diate hcp (fcc) site. These hops occur in addition to hops
between neighboring fcc and hep sites. The energy barriers
for these longer hops are of the form given by Eq. (2) with
EP set to a value 1.5 times higher than the hopping barrier for
an isolated atom. This value was chosen to allow for island
rearrangement without imparting significant island mobility.
In this way, we achieve compact islands similar to those seen
in experimental studies at these conditions [11,12].

Interaction Energy

(meV)

-100

—138
20
30

50

FIG. 1. (Color online) Diagram indicating the spatial layout of
interactions for the Ag/1-ML Ag/Pt(111) system. The positions of
the first through sixth neighbors are indicated and the scale (also
Table 1) indicates the strength of the interaction at each distance.
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We probed submonolayer growth in both these systems.
When atoms are deposited onto an initially bare substrate,
they diffuse and aggregate to form nuclei, which grow to
stable islands with the addition of diffusing adatoms. In the
initial stages of growth, the number of islands (or their den-
sity) increases as new islands nucleate. After the island den-
sity has reached a steady-state value, the probability that
newly deposited adatoms will add to existing islands exceeds
the probability that they will nucleate new islands. In this
steady-state regime, the number of islands is approximately
constant until islands grow large enough that they coalesce
and the island density decreases. In our work, we simulate
growth beginning from an initially bare substrate up to the
“steady-state” regime, at a coverage in the range of 0.1-0.2
ML. For both systems, we simulated the temperature range
from 35 to 65 K, with a deposition rate of F=0.1 ML/s. An
important ratio characterizing growth is /D, or the ratio of
the deposition rate F to the rate for isolated adatom hopping
D. For the conditions probed here, we cover the range
FID=5.6X10"7-F/D=0.34 for Ag/Ag(111) and F/D
=1.1X10°-F/D=3.1X107° for Ag/1-ML Ag/Pt(111).

B. Serial KMC algorithm

We use a serial KMC algorithm based on the general
KMC method proposed by Fichthorn and Weinberg [13],
which adapts the “N-fold way” algorithm of Bortz, Kalos,
and Liebowitz [14]. For a lattice consisting of N sites, the
algorithm proceeds as follows:

(i) Determine the total rate ry; associated with each site i.
The total rate is the sum of the rates r; of all diffusion hops
J originating from site i (i.e., r;=2r;), if site i is occupied,
or the deposition rate F (i.e., rri=F ), if site i is vacant. While
this algorithm would not be adequate for multilayer growth,
it is sufficient to simulate the low coverages probed here.

(ii) Determine the total rate R, for the global lattice,

where

N
Rr=2 rri. (3)
i=1

(iii) Select a site i at random, with a probability given by

Iri
Pi=—. 4
=R 4)
(iv) At site i, randomly select a particular transformation
J with rate r; and a probability given by

rr
(v) Actuate the event and increment the simulated time

using

—In
At:—p
Rr

) (6)
where p is a uniform random number between 0 and 1.

(vi) Repeat the algorithm until a simulation criterion is
met for exiting the KMC loop.

011606-2



SYNCHRONOUS RELAXATION ALGORITHM FOR...

FIG. 2. (Color online) Domain decomposition of a KMC lattice
into nine domains. The ghost region for one of the domains is
indicated by the shaded area, while the skin region is indicated by
the filled area, and the inner domain core is the central area in
white.

C. Parallel SR-KMC algorithm

The parallel SR-KMC algorithm that we use here bears
close similarity to that employed by Shim and Amar [3],
although there are differences that we will discuss below.
This algorithm is based on spatial decomposition of a large
KMC lattice into M square domains, as shown in Fig. 2. If
each domain was independent of the rest, a parallel KMC
simulation would involve running the serial algorithm for
each domain on a different processing element (PE) and
combining the time lines of all domains to obtain the evolu-
tion of the global system. However, the domains are not
independent of one another, as atoms in a given domain may
interact with atoms in neighboring domains. Moreover, at-
oms may diffuse from one domain to another. Both of these
features serve to couple timelines of the various domains.
The bulk of the overhead involved in the SR-KMC algorithm
is focused on properly handling domain interactions.

To account for domain interactions, each domain contains
a core, a “skin” region, and a “ghost” region. As shown in
Fig. 2, the core is the innermost area of a domain. Events that
occur within cores are independent of events that occur on
other domains. The skin sites occupy the region between the
core and the domain boundary. These sites represent an area
where a configurational change would affect rates in a neigh-
boring domain. Thus the “thickness” of the skin region is
defined by the interaction range among the adatoms. The
skin thicknesses for the Ag/Ag(111) system and the Ag/
I-ML Ag/Pt(111) system are one and four lattice sites, re-
spectively. The ghost sites contain necessary information
from neighboring domains to determine rates in the skin re-
gion. These sites are defined such that the ghost sites of a
given domain are the skin sites of the neighboring domains,
as shown in Fig. 2.

Using the domain decomposition described above, the
parallel SR-KMC algorithm proceeds as follows:

(i) Each PE carries out a single, serial KMC iteration (as
described above) on its prescribed domain.

PHYSICAL REVIEW E 75, 011606 (2007)

(i1) Each PE ascertains if the chosen event occurred in its
skin region. If the event on a particular PE is a “skin event,”
then this PE advances to step iv; otherwise the PE advances
to step iii.

(iii) If the number of KMC iterations on a PE is less than
the global update frequency G, then this PE goes back to step
i; otherwise the PE advances to step iv.

(iv) The various PEs communicate with one another in a
global update, which occurs when all PEs have reached this
step. Each PE communicates to all the others the time of its
last event and whether or not the event was a skin event.

(v) The least advanced time is determined on each PE as
the smallest last event time among all PEs.

(vi) If necessary, each PE performs a SR iteration, i.e., it
removes all the KMC events that occurred after the least
advanced time. If a skin event has the least advanced time,
then the neighboring PE(s) to the PE that hosted the skin
event are updated to account for the new lattice configura-
tion.

(vii) The domain boundaries and G, are adjusted, if nec-
essary.

(viii) The algorithm recommences at step i, with each PE
at the end of its timeline from the previous cycle, until a
criterion is met for exiting the SR-KMC loop.

Thus the parallel SR-KMC algorithm consists of a cycle in
which tentative, parallel, independent KMC timelines are
first generated, then verified for consistency with one an-
other, and finally revised via the SR step to ensure fidelity of
the parallel simulation to an analogous serial simulation.

There are several notable features of our KMC algo-
rithms. First, in our serial KMC algorithm, we choose events
by selecting first an appropriate lattice site and then choosing
an event from among those possible at that site. An alternate
way of selecting events is to utilize event lists [14]. If the
number of different possible events is small and can be de-
termined before the simulation is executed, then utilization
of event lists is efficient. However, in some of the newer
implementations of KMC, where events are determined on-
the-fly [17-19], it is not possible to construct event lists. In
this work, the number of different possible events for the
Ag/1-ML Ag/Pt(111) system is larger than the number of
sites on our domains. In this case, it is more efficient to
choose events by sites.

Choosing events by sites leads to a different scaling of our
serial KMC algorithm with lattice size than that obtained by
choosing events by lists. For example, the computational ef-
fort associated with Shim and Amar’s algorithm [3], in which
events are selected by lists, scales linearly with the lattice
size N. However, our algorithm scales as ~N2: The number
of iterations to achieve, for example, a fixed fractional ad-
sorbate coverage scales as N and the effort per iteration as-
sociated with obtaining the total rate and site probabilities
(i.e., steps ii and iii in the serial KMC algorithm) also scales
as N. We have reduced the scaling of event selection (step iii
of the serial KMC algorithm) by using a binary tree search
[15], which scales as In N. It is also possible to reduce the
scaling for obtaining the total rate (step ii) to In N using a
binary tree [16]. By both selecting events and calculating the
total rate using binary trees, it is possible to have NIn N
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scaling of a site-based algorithm, but this is not implemented
here.

An advantage of choosing events by sites is that the SR
rollback algorithm is relatively straightforward to implement.
Thus, here, we retain events from partially completed cycles,
as described in step vi of the parallel KMC algorithm. When
events are chosen from event lists, partial rollbacks are dif-
ficult. Thus, in Shim and Amar’s study, an entire cycle is
discarded if a skin event occurs [3].

In the absence of skin events, the KMC timelines on the
various domains would be independent and the SR-KMC
algorithm could achieve 100% (or even superparallel) effi-
ciency. A substantial portion of parallel overhead is involved
with detecting and properly dealing with skin events. Step vii
in the above outline of the SR-KMC algorithm contains fea-
tures to improve the efficiency of the SR-KMC algorithm in
this regard. We discuss each of these features below.

The SR-KMC algorithm contains a global update fre-
quency G, which is the maximum number of KMC iterations
that can occur on a given PE before a global update occurs.
Here, we consider that there is an optimal value for G, which
reflects a balance between communication and computation
overhead. Communication between PEs entails a significant
amount of parallel overhead. Moreover, before a skin event
occurs, the timelines on the various PEs are independent of
one another. Thus, to reduce communication overhead, it is
desirable not to communicate (possible) skin events after ev-
ery serial KMC iteration. On the other hand, if G is larger
than the frequency with which skin events occur, then com-
putational overhead is consumed in “rollbacks” via the SR
algorithm. As discussed by Shim and Amar [3], optimal ef-
ficiency can depend on several factors, including a third type
of parallel overhead which occurs from fluctuations and as-
sociated PE idleness. They tried a number of strategies to
determine the optimal global update frequency and found
that and that dynamical optimization to attain some fixed
quantity during a cycle was the best method.

To attempt to increase efficiency here, we dynamically
alter the value the value of G to track the frequency of skin
events observed in our simulations. We expect the skin-event
frequency to change with time during our simulations, as the
film morphology evolves. We begin with a base value of G,
(=10), which was determined to be near optimal in short-
time simulations of Ag/Ag(111) and Ag/1-ML Ag/Pt(111)
with a fixed global update frequency. If all iterations can be
completed without a skin event, we increment G by 6G
(=3) and we continue to increment G by G for each cycle
that is completed without a skin event. The value of 6G=3
was determined to be optimal in simulations using 6G=1, 2,
3, 5, and 10. When a skin event occurs, G is reset to its value
of G unless the skin event occurs before G, iterations, then
we decrement the value of G below G, This feature adds a
small amount of parallel overhead in the form of computa-
tion.

We also allow the domain boundaries to shift in our simu-
lations. Occasionally, repeated skin events occur due to re-
currence of a particular move sequence. The repetitious skin
events lead to a loss of efficiency. If the domains can be
shifted such that these events occur within the domain core
regions, then efficiency can be gained. Thus, in monitoring
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FIG. 3. (Color online) Illustration of the boundary-shift algo-
rithm for a KMC lattice decomposed into nine domains. Repeated
motion in the skin region (indicated by the small trajectory) leads to
frequent global updates and a loss of efficiency. Here, the original
domain boundaries, given by solid lines, are shifted to the left and
the new boundaries are indicated by dashed lines. In this way, the
region hosting repetitive skin events is shifted into the core region.

the frequency of skin events, if we detect two consecutive
skin events we shift the domain boundaries either left-right
or up-down, depending on the location of the last skin event,
as depicted in Fig. 3. The boundaries are uniformly shifted
by the width of the skin region and periodic boundary con-
ditions are maintained during the shift. The algorithm re-
quires one additional global communication to transmit the
locations of the atoms beyond the locations of the ghost sites
of a particular domain.

The KMC simulations were carried out on three different
computing platforms. The first of these (denoted as C1) con-
sists of 20 AMD Athlon XP nodes with a clock speed of
1.6 GHz and a fast-ethernet communication network. The
second (C2) is a Beowulf cluster consisting of 162 AMD
Athlon MP2200+ nodes with a clock speed of 2.8 GHz and
with high-speed Dolphin and fast-ethernet network intercon-
nects. The third cluster (C3) consists of 128 Intel P4 nodes
with a clock speed of 2.4 GHz and a Quadrics high-speed
network interconnect. The codes were written in FORTRAN.
All interprocessor communications were carried out using
the Message-Passing Interface (MPI).

III. RESULTS AND DISCUSSION

We first validated the parallel code by comparing the
simulated island density N, between the serial and parallel
codes. The island density is defined as the number of islands
per lattice site and is shown in Fig. 4 as a function of lattice
size for various temperatures and numbers of PEs on various
platforms for the Ag on Ag(111) system. The parallel island
densities agree with the serial values and depend only on
temperature, as we expect if the parallel code is executing
properly. Analogous results are seen in our parallel simula-
tions of Ag on 1-ML Ag/Pt(111).

The performance of a parallel computer code is normally
characterized by two quantities, the speedup S and the effi-
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FIG. 4. (Color online) Simulated island density N, as a function
of lattice size for the Ag/Ag(111) system at 7= 35, 50, and 65 K.
The lines indicate averages obtained in serial simulations, while the
symbols represent various parallel results. The uncertainties are the
standard error and are smaller than the symbol sizes.

ciency E. If ¢, is the time required by a single PE to execute
the serial code and 7, is the time required to execute the
parallel code on P PEs, then standard definitions for S and E
are

tY
§=-=, (7)
Ip
and
S
E= F X 100 % . (8)

For a serial simulation that scales linearly with the problem
size, the ideal parallel efficiency is 100% (i.e., the parallel
code will run P times faster on P processors). Because of the
specifics of the serial KMC algorithm employed here (as
discussed above, our serial algorithm scales with the lattice
size N as ~N?), our parallel codes exhibit superparallel effi-
ciencies (i.e., efficiencies greater than 100%) using the defi-
nition of Eq. (8). Thus, to better quantify the additional par-
allel overhead incurred here, we adopt a different efficiency,
defined by

I
E =Y % 100%, 9)

Iy PN

where 1y is the time required to execute the serial code on a
lattice containing N sites and ¢, py is the time required to run
the parallel code on a lattice containing P X N sites distrib-
uted equally over P processors. If the parallel code is 100%
efficient, then the time required to run the parallel code on P
processors with domains of size N is equal to the time to run
a serial simulation on a single lattice of size N, independent
of the scaling of the code with N. Equation (9) provides a
clear measure to quantify the overhead incurred by the par-
allel algorithm and this efficiency will be reported through-
out the rest of the paper.
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FIG. 5. (Color online) Parallel efficiency, as defined by Eq. (9),
for simulations of the Ag/Ag(111) system on C1 as a function of
the domain size for various temperatures with 4 and 16 PEs. The
uncertainties are the standard error and are smaller than the symbol
sizes when not shown.

A. Ag on Ag(111)

Figure 5 shows the parallel efficiency as a function of the
domain size for simulations of the Ag/Ag(111) system on
C1. As might be anticipated, the efficiency increases with
increasing domain size. In these simulations, efficiency is
connected to the frequency of skin events, which decreases
as the domain size increases and the ratio of skin to core sites
decreases. We also see the effect of temperature, which is
weak. At first, this might be considered surprising, since ada-
tom hopping into the skin region comprises the majority of
skin events. The adatom hopping rates increase exponentially
with increasing temperature, leading to an increasing fre-
quency of skin events and a loss of efficiency. However, a
second loss of efficiency occurs at low temperatures, where
PE idleness and “rollbacks” become important. At low tem-
peratures, adatom mobilities are low and we can simulate a
greater average number of events per cycle (i.e., G is larger
at low temperatures). However, fluctuations in the simulated
number of events per cycle, due to variations in the distribu-
tion of skin-event times, increase as the temperature de-
creases. The result is increasing PE idleness and overhead for
SR rollbacks as temperature decreases. These opposing
trends lead to a weak temperature dependence of our results.

Comparing results for 4 and 16 PEs in Fig. 5, we see that
the efficiency for a fixed domain size is lower for 16 PEs
than it is for 4 PEs. This trend is also seen in Fig. 6, which
shows the parallel efficiencies found on C2 and C3 for the
growth of Ag on Ag(111). We see that the efficiency is a
decreasing function of the number of processors. Similar de-
creases have been observed elsewhere [2,3,20]. The decreas-
ing efficiencies occur because of an increasing number of
communications on global updates, as well as increased pro-
cessor idleness (and its associated increase in SR rollbacks).
Concerning the latter, a global update cannot occur until all
processors have reached step iv in the above outline of the
parallel algorithm. Fluctuations in the number of events per
cycle increase with increasing number of PEs for systems
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FIG. 6. (Color online) Parallel efficiency, as defined by Eq. (9),
for simulations of the Ag/Ag(111) system on C2 and C3 as a func-
tion of the number of PEs for two different temperatures. The un-
certainties are the standard error and are smaller than the symbol
sizes when not shown.

that require a global update [2,3,20] and there is overhead in
idleness and SR rollbacks associated with this. Comparing
results from simulations with 256 X256 and 512X 512 do-
mains in Fig. 6, we see that the larger domains have higher
efficiencies, as we also saw in Fig. 5. However, the differ-
ence between the larger and smaller domains decreases with
an increasing number of PEs. Again, we can attribute this to
the effects of idleness due to fluctuations that occur with an
increasing number of processors. For a large number of pro-
cessors, these fluctuations begin to outweigh benefits in the
increased core-to-skin ratio for a large domain size. Finally,
comparing Figs. 5 and 6, we see that the efficiencies for a
fixed temperature, domain size, and number of PEs are
~10-15 % higher on C2 and C3 than they are on C1. This
difference occurs because of the faster network communica-
tion speed and lower latency on C2 and C3 than that on the
fast-ethernet network on C1. For example, we find that com-
munication and PE idleness account for 98% of the parallel
overhead in the Ag/Ag(111) simulations performed on C1 at
a temperature of 50 K and with a domain size of 128 and 4
PEs.

It is worth mentioning that, although the parallel efficien-
cies can be low, significant speed-ups can be achieved via the
SR-KMC algorithm. Figure 7 shows the speedup, obtained
using Eq. (7), for the Ag/Ag(111) system. Using the defini-
tion of Eq. (8), these speedups would lead to superparallel
(greater than 100%) efficiencies. It is important to note that
the achievable speedup and efficiency, as defined by Eq. (8),
depend on the implementation of steps i—iii in the serial
KMC algorithm and their scaling with lattice size, as dis-
cussed above. By altering the lattice-size scaling of our serial
KMC code, the efficiencies defined by Egs. (8) and (9)
would be comparable and the speedups would be more mod-
est than those that we find.

B. Ag on 1-ML Ag/Pt(111)

The parallel efficiencies for the simulations of the growth
of Ag on 1-ML Ag/Pt(111) are shown in Fig. 8. Although

o
& 400
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FIG. 7. (Color online) Speedup, as defined by Eq. (7), on C2 as
a function of the number of PEs for simulations of Ag/Ag(111) at
a temperature of 50 K for two different domain sizes.

these efficiencies exhibit the same trends as those shown in
Figs. 5 and 6, they are overall lower than those for the
Ag/Ag(111) system. We attribute this to the larger skin re-
gion needed to capture the first- through sixth-neighbor in-
teractions for the heteroepitaxial system. With a larger skin
thickness, skin events are more frequent and the overhead
associated with SR rollbacks is greater. For example, calcu-
lation is the most significant source of parallel overhead,
comprising 74%, in simulations of Ag/1-ML Ag/Pt(111) on
C2 for a 128 X 128 domain, with four PEs, at a temperature
of 50 K. We note that the efficiency does increase with in-
creasing domain size and, in attempts to increase efficiency,
it should be possible to compensate for larger skin thick-
nesses by choosing larger domain sizes—as long as the num-
ber of processors remains moderate.

We note that the efficiency decreases as the number of
processors increases in Fig. 8, as we saw in Figs. 5 and 6 for
Ag/Ag(111). Shim and Amar noted a similar decrease in
their studies [3]. They found that the dependence of effi-
ciency on the number of processors (Np) could be described

by
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FIG. 8. (Color online) Parallel efficiency, as defined by Eq. (9),
on C2 as a function of the domain size for simulations of the Ag/
I-ML Ag/Pt(111) system at 35 K. The uncertainties are the stan-
dard error and are smaller than the symbol sizes when not shown.
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FIG. 9. (Color online) Increase in efficiency E;,. in simulations
that use boundary shifting over those that maintain static simulation
boundaries as a function of temperature. Results are shown for
simulations on C2 with a domain size of 256 X 256. The results for

the Ag/Ag(111) system were obtained from simulations with four
PEs. The uncertainties are the standard error.

E’—; (10)
" 1+c(InNp)#’

with 8 ranging between 0.66 and 1.5. For our simulations,
we find that B ranges between 1.49 for simulations of Ag/
I-ML Ag/Pt(111) and 3.4 for the Ag/Ag(111) system. The
differences between the exponents that we observe for the
two systems may reflect differences in the balance between
communication and computation in the parallel overhead for
these systems: For Ag/1-ML Ag/Pt(111), most of the paral-
lel overhead is consumed by computation, while communi-
cation dominates the parallel overhead for Ag/Ag(111).

C. Dynamic boundary shifting

The results in Figs. 5-8 include domain boundary shift-
ing. Below, we discuss the impact of this feature on effi-
ciency. Figure 9 shows the influence of boundary shifting on
efficiency for both the Ag/Ag(111) and the Ag/l1-ML
Ag/Pt(111) systems. These results are representative of all
the conditions that we probed. Here, we show the incremen-
tal efficiency E;,., defined as the difference in efficiency E’
between simulations run with and without boundary shifting
at otherwise identical conditions. For both systems, E;,. is
positive, indicating that boundary shifting can improve effi-
ciency. For a fixed domain size, the gain in efficiency is
apparently independent of the number of processors. We see
that E;,. increases with increasing temperature. This trend
can be at least partially attributed to increasing island rear-
rangement, which leads to frequent, localized motion with
increasing temperature.

Interestingly, simulations of the Ag/1-ML Ag/Pt(111)
system benefit more from boundary shifting than those for
Ag/Ag(111). This can be understood in terms of the unique

PHYSICAL REVIEW E 75, 011606 (2007)
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FIG. 10. (Color online) Potential-energy map of the interaction
energy for simulations of Ag on 1-ML Ag/Pt(111) at 35 K. The
dark dots represent adatoms and the color scale indicates the inter-
action energy at each vacant site on the surface.

potential-energy surface (PES) topology associated with the
interactions in this model. Figure 10 shows a map of the PES
associated with this system during its growth at 35 K. We
constructed this map by depositing atoms to a fixed cover-
age, then freezing the atom positions and calculating the in-
teraction energy of a probe atom at all the vacant sites on our
KMC lattice. Here, we see that favorable potential-energy
basins develop as isolated attractive areas surrounded by
more repulsive areas. These can be seen as green surrounded
by yellow areas (or gray surrounded by light) or as yellow
areas surrounded by orange areas (light surrounded by gray)
in Fig. 10. Adatoms deposited near these basins become
trapped and perform rapid, repeated motions. When these
basins coincide with skin regions, there is a considerable loss
of efficiency. Boundary shifting relocates these areas within
the cores, where they cannot interfere with the timelines of
their neighboring domains.

We note that while the present boundary-shifting algo-
rithm is beneficial for the systems simulated here, which
have rapid localized motion, it may not be generally benefi-
cial. For example, the present algorithm will not remedy
rapid nonlocalized motion, as would occur for rapidly diffus-
ing adatoms at high temperatures. The diffusion of small
clusters on solid surfaces via concerted motion might also
fall into this category [21]. In such systems, rapid and re-
peated motion in the skin is pervasive and frequent boundary
shifting may actually lower the efficiency. For a moderate
number of PEs, such simulations can be rendered efficient
using large domain sizes, which minimize the skin-to-core
area ratio, as discussed above.

IV. CONCLUSIONS

In conclusion, we presented a modified version of the SR
algorithm for parallel KMC simulations of thin film growth.
We showed, for two different growth models, that these
simulations can achieve good efficiency—especially for large
domain sizes with a moderate number of processors. By in-
corporating domain boundary shifting, we could gain
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additional efficiency, which was substantial for the Ag on
I-ML Ag/Pt(111) system with sixth-neighbor interactions.
The origins of parallel overhead, in the form of communica-
tion, computation, and idleness, depend on the computational
platform employed, the system under study and, for a given
system, the growth conditions, lattice size, and the number of
PEs employed. Although the parallel scaling of this algo-
rithm is poor, we note that many researchers have access to

PHYSICAL REVIEW E 75, 011606 (2007)

small Beowulf clusters. Implementation of the parallel SR
algorithm on such platforms can be beneficial.
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